

Current and Energy Measurement Technology – Efficiency Is That Easy! Product Overview

Content

WAGO Energy Management	4
Current Transformers Selection Guide	8
Power and Energy Measurement	10
Voltage Taps	12
Plug-In Current Transformers with CAGE CLAMP [®] Connection Technology	14
Split-Core Current Transformers	18
Plug-In Current Transformers with <i>picoMAX</i> ® Pluggable Connector	20
Line Length Calculation for Current Transformers	22
Terminal Block Assemblies for Current and Voltage Transformers	24
High-Current, Rail-Mount Terminal Blocks up to 185 mm ²	26
Current and Voltage Tap	28
Rogowski Coils	30
Signal Conditioners and Isolation Amplifiers	32
Intelligent Current Sensors	36
Measurement Methods	38
Glossary	40

WAGO ENERGY MANAGEMENT – THE RIGHT SOLUTION FOR EVERY STEP

CONVERTING

With Our Modern Energy Data Collection

Transparency Pays Back

Complementary electricity and energy measurement solutions enable comprehensive consumption recording to create a base for determining relevant efficiency ratios. It is only through this transparency that potential savings can be discovered and, through appropriate measures, considerable cost savings can be realized. This is also particularly important for large-scale consumers, such as the press or body shop in an auto plant.

Measuring – Systematically Record Energy Consumption

Anywhere high currents must be measured and processed, plug-in current transformers are always the first choice. If existing systems will be retrofitted, save time by using Rogowski coils to avoid disassembling cables or interrupting processes.

Cloud Connectivity (via MQTT)

PARAMETER SETTING VISUALIZING

EVALUATING

Evaluating – Identifying and Planning Energy Use

Three standard operation 3-phase power measurement modules within the WAGO-I/O-SYS-TEM 750 are available for recording and evaluating all relevant metrics from a three-phase supply network. An extreme operation (XTR) variant is also available for harsh applications. This allows comprehensive network analysis to be performed and the power supply for machine drives to be optimally controlled, helping prevent damage, machine failures and downtime.

Parameterization and Visualization

Software solutions for the WAGO-I/O-SYSTEM and WAGO's signal conditioners make parameterization and visualization as simple as child's play via the new WAGO Energy Data Management Application.

Cloud Connectivity

The MQTT software extension for the PFC100 and PFC200 Controllers allows data to be easily transmitted from the field level to the cloud. You can decide whether the controller sends the data to Microsoft Azure, Amazon Web Services, or IBM Bluemix.

MEASURING

WAGO ENERGY MANAGEMENT: ONE SOLUTION – MANY APPLICATIONS

This user-friendly solution, consisting of software combined with a modular control system, records measurement data from different media and influencing factors for energy monitoring and processes them for further analyses, archiving and reporting. With the PFC200 Application Controller (750-8202/000-022), data from meters and sensors can be easily collected by one convenient input module and parameterized through the available software application – no cumbersome and complicated programming.

ADVANTAGES:

- Modular energy and process data collection, management and visualization \rightarrow User-friendly energy data evaluation and derivation of efficiency plans
- Easy input parameterization via Web visualization \rightarrow No programming experience required
- Establish indicators to achieve DIN EN ISO 50001
 → Economical alternative to energy management software
- Connect existing sensors to the WAGO-I/O-SYSTEM
 → Integrates into existing systems for flexibility and maximum return on investment

The data can be transferred to higher level energy management software via MODBUS TCP/IP or as a CSV file via FTP/FTPS. In addition, it is possible to save history on an SD card. Because it is so easy to integrate the versatile new WAGO solution into existing systems, adapting to individual requirements is also quite simple. With the integrated visualization tool, collected data are readily displayed and evaluated in various forms such as bar or line graphs.

PFC200 Application Controller (750-8202/000-022)

CURRENT TRANSFORMERS SELECTION GUIDE

The Right Solution for Every Application

855 Series Current Transformers	Split-Core Current Transformers	Plug-In Current Transformers with CAGE CLAMP® Connection Technology		
Application	Retrofits	New systems		
Coil bobbin	Separable	Closed		
Connection technology	Connection cable (color coded)	CAGE CLAMP®		
Mounting	Round cable (insulated), copper current bar (insulated)	Round cable, copper current bar, DIN-rail, mounting plate		
Compatibility with other WAGO components	750-493, (750-493/000-001) 750-494, (750-494/000-001) 750-495, (750-495/000-001) 857-550			
Primary rated current	60 1000 A	50 2500 A		
Secondary rated current	1 A / 5 A	1 A / 5 A		
Accuracy class	0.5; 1 or 3	1 or 3		
Ambient operating temperature	−10+55 °C	−5 +50 °C		
Standards	EN 61869-2	EN 61869-2		
Approvals	-	<i></i> / <i>R</i> .		
Connection examples				

*In the measurement range 0.8 to 32 A and in combination with WAGO's 3-phase power measurement modules, the accuracy class 0.5 is met per EN 61869-2.

Plug-In Current Transformers with a <i>picoMAX®</i> Pluggable Connector		Rogowski Coils RT500/RT2000	Rogowski Coils RC 70 / RC 125 / RC 175
		Ì	
New systems		Retrofits	Retrofits
Closed		Separable	Bayonet connector, separable
picoMAX®		Connection cable	Connection cable
Round cable, DIN-rail, mounting plate		Round cable (insulated), copper current bar (insulated)	Round cable, copper current bar
750-493 750-494 750-495 857-550		750-495/000-002 857-552 789-652 / 789-654	750-495/000-002 857-552
32 A	35 / 64 A	Up to 2000 A	Up to 4000 A
320 mA	1 A	(up to 40.02 mV)	22.5 mV / kA
0.5*	1	-	1
−10+55 °C		-40 +80 °C	-40+80 °C
EN 61869-2		IEC 61010-1	IEC 61010-1 / EN 61869-2
	c RL us		UL pending

POWER AND ENERGY MEASUREMENT

With the WAGO-I/O-SYSTEM 750 and 750 XTR

The I/O modules for three-phase power measurement record and process all relevant metrics from a three-phase supply network. They provide system operators with increased insight into energy

consumption by specific machines and systems, as well as the ability to perform comprehensive network analysis.

ADVANTAGES:

- Measure machine and system energy consump- The dark gray modules from the 750 XTR tion values
- Measures and processes all relevant measured variables
- Comprehensive network analysis
- Connection to the WAGO-I/O-SYSTEM: fieldbus-independent, compact and flexible
- Series can also be used in eXTReme environments and offer these advantages:
- eXTReme temperatures from -40 to +70 °C (-40 ... +158 °F)
- eXTReme isolation up to 5 kV of impulse voltage
- eXTReme vibration resistance up to 5g of acceleration

Image			
Energy consumption	\checkmark	\checkmark	\checkmark
Voltage	3~ 480 V	3~ 480 V	3~ 480 V/690 V
Current	1 A (750-493) 5 A (750-493/000-001)	1 A (750-494) 5 A (750-494/000-001) External shunts (750-494/000-005)	1 A (750-495) 5 A (750-495/000-001) Rogowski coil (750-495/000-002)
Active power/energy	\checkmark	\checkmark	\checkmark
Phase position	\checkmark	\checkmark	\checkmark
Reactive power/energy	via function block	\checkmark	\checkmark
Apparent power/energy	via function block	\checkmark	\checkmark
Rotary field detection		\checkmark	\checkmark
Power factor	(✓)	\checkmark	\checkmark
Frequency measurement	\checkmark	\checkmark	\checkmark
Four-quadrant operation (inductive, capacitive, consumer, generator)		\checkmark	\checkmark
Harmonic analysis (up to the 41st harmonic)		\checkmark	\checkmark
Neutral conductor measurement			\checkmark
Other product variants		Extended temperature range: -20 +60 °C (-4 +140 °F) 750-494/025-000 (1 A), 750-494/025-001 (5 A)	750 XTR: 750-495/040-000 (1 A), 750-495/040-001 (5 A), 750-495/040-002 (Rogowski coil)
Housing width	12 mm (0.472 in.)	12 mm (0.472 in.)	24 mm (0.945 in.)
Item number	750-493	750-494	750-495

General Configurations

Power and energy measurement of a machine in a 480 VAC mains network via three-phase power measurement module (750-493, 750-494)

General Configurations

Power, energy and N-conductor measurement of a machine in a 480/690 VAC mains network via three-phase power measurement module (750-495)

Application

Direct connection of Rogowski coils to the three-phase power measurement module (750-495/000-002)

Application

Direct connection of external shunts to the three-phase power measurement module (750-494/000-005)

Application Example: The Complete Retrofit Solution

3-Phase Power Measurement Module, 750-495

Terminal Block Assembly, 2007-8874

N L3 L2 Split-Core Current Transformers, 855 Series

Voltage Taps for Insulated Conductors,

VOLTAGE TAPS

For Insulated Conductors

Installation on insulated conductor with IDC connection

Integrated SIBA fuse to protect equipment and conductor

ADVANTAGES:

- Faster measurement voltage tapping with just one turn
- Tool-free assembly
- Conductor contact via IDC connection
- Reliable measurement device and conductor protection via integrated SIBA fuse

Watch the video to learn more.

Image	Conductor Range	Fuse	Cable Length	Mounting	Item Number
	2.5 6 mm² (14 10 AWG) 3 5 mm Ø	2 A, 450 V, F, 70 kA (5 x 25 mm)			855-8001
	Feedthrough for Measurement Conductor	-	3 m	Conductor contact via IDC	855-8002
1	10 16 mm² (8 6 AWG) Ø 5 7 mm	2 A, 450 V, F, 70 kA (5 x 25 mm)	(pre-assembled)	connection	855-8003
1	(feedthrough for measurement conductor)	-			855-8004

Application Example: The Complete Retrofit Solution

3-Phase Power Measurement Module, 750-495

Terminal Block Assembly, 2007-8874

Plug-In Current Transformers with CAGE CLAMP®, 855 Series

VOLTAGE TAPS

For Busbars

Installation on busbar; fastening with Allen wrench

Conductor termination via Push-in CAGE CLAMP® connection technology

Integrated SIBA fuse (overload and short circuit protection)

Various marking options for clear identification

ADVANTAGES:

- Fast, easy installation to live busbar with clamp mount or M6/M8 mount
- Various marking options for clear identification
- Universal conductor termination via Push-in CAGE CLAMP® connection technology
- Fused voltage path protects downstream measurement devices

Image	Fuse	Connection Technology Solid-/Fine-Stranded	Mounting	Item Number
			M6 mount	855-8006
E Start	2 A, 450 V, F, 70 kA (5 x 25 mm)	Push-in CAGE CLAMP® (WAGO 2624 Series)	M8 mount	855-8008
			Clamp mount (4 15 mm/ 0.157 0.591 in. bar thickness)	855-8015

PLUG-IN CURRENT TRANSFORMERS

With CAGE CLAMP® Connection Technology

ADVANTAGES:

- Screwless CAGE CLAMP® connection technology
- Primary currents 50 to 2500 A / secondary currents 1 A or 5 A
- Continuous overload of 120% the nominal primary current
- Tool-free installation via quick-mount kit
- Low-voltage current transformer for max. operating voltages up to 1.2 kV
- UL certified (Certificate No. E356480)
- EN 61869-1/EN 61869-2

Watch the video to learn more.

CAGE CLAMP® connection

Time-Saving Installation with Plug-in Current Transformers from WAGO

Mounting on round cable

Quick-Mount Kit, 855-9910

Mounting on DIN-rail via carrier rail adapter

Secured to mounting plate

Mounting on copper DIN-rail

PLUG-IN CURRENT TRANSFORMERS

With CAGE CLAMP® Connection Technology

Image	Primary Rated Current	Secondary Rated Current	Rated Power	Accuracy Class	Item Number
	50 A	1 A	1.25 VA	3	855-301/050-103
	50 A	5 A	1.25 VA	3	855-305/050-103
	60 A	1 A	1.25 VA	1	855-301/060-101
808	60 A	5 A	1.25 VA	1	855-305/060-101
	75 A	1 A	2.5 VA	1	855-301/075-201
35 60	75 A	5 A	2.5 VA	1	855-305/075-201
	100 A	1 A	2.5 VA	1	855-301/100-201
Current bar 1: 30 x 10 mm	100 A	5 A	2.5 VA	1	855-305/100-201
Current bar 3: 20 x 20 mm	150 A	1 A	5 VA	1	855-301/150-501
Round cable: 26 mm	150 A	5 A	5 VA	1	855-305/150-501
	200 A	1 A	5 VA	1	855-301/200-501
	200 A	5 A	5 VA	1	855-305/200-501
	250 A	1 A	5 VA	1	855-301/250-501
	250 A	5 A	5 VA	1	855-305/250-501
	300 A	5 A	5 VA	1	855-305/300-501
	400 A	1 A	10 VA	1	855-301/400-1001
	400 A	5 A	10 VA	1	855-305/400-1001
	600 A	1 A	10 VA	1	855-301/600-1001
	600 A	5 A	10 VA	1	855-305/600-1001
	250 A	1 A	5 VA	1	855-401/250-501
	250 A	5 A	5 VA	1	855-405/250-501
	400 A	1 A	5 VA	1	855-401/400-501
	400 A	5 A	5 VA	1	855-405/400-501
35 70	600 A	1 A	5 VA	1	855-401/600-501
	750 A	5 A	5 VA	1	855-405/750-501
Busbar 1: 40 x 10 mm					
Busbar 2: 30 x 15 mm Round cable: 32 mm					

Accessories		Item Number
Car	Carrier Rail Adapter for Plug-In Current Transformers (for 855-3xx/xxxx-xxxx and 855-4xx/xxxx-xxxx)	855-9900
اللہ	Quick-Mount Kit (2 pieces including cable tie)	855-9910

Image	Primary Rated Current	Secondary Rated Current	Rated Power	Accuracy Class	Item Number
	400 A	1 A	10 VA	1	855-501/400-1001
	400 A	5 A	10 VA	1	855-505/400-1001
35 85	600 A	1 A	10 VA	1	855-501/600-1001
	600 A	5 A	10 VA	1	855-505/600-1001
	800 A	1 A	10 VA	1	855-501/800-1001
	800 A	5 A	10 VA	1	855-505/800-1001
	1000 A	1 A	10 VA	1	855-501/1000-1001
Busbar 1: 50 x 12 mm	1000 A	5 A	10 VA	1	855-505/1000-1001
Round cable: 44 mm					
	1500 A	1 A	5 VA	1	855-601/1500-501
	1500 A	5 A	5 VA	1	855-605/1500-501
88					
335 43					
Busbar 1: 63 x 10 mm					
Busbar 2: 50 x 30 mm					
	1000 A	1 A	10 VA	1	855-801/1000-1001
	2000 A	1 A	10 VA	1	855-801/2000-1001
	2000 A	5 A	10 VA	1	855-805/2000-1001
120					
35					
Busbar 1: 80 x 10 mm Busbar 2: 60 x 30 mm					
Round cable: 55 mm					
	2500 A	1 A	10 VA	1	855-1001/2500-1001
	2500 A	5 A	10 VA	1	855-1005/2500-1001
25					
35 130					
Busbar 1: 100 x 10 mm					
Busbar 2: 80 x 30 mm					

SPLIT-CORE CURRENT TRANSFORMERS

Retrofit Existing Systems

ADVANTAGES:

- No measuring cable interruption
- Primary currents 60 to 1000 A / secondary currents 1 or 5 A
- Compact, dividable housing means fast and easy mounting for retrofits
- Transformer leg (855-5xxx) can be completely removed if space is tight
- Easy, cost-effective installation via cable ties (included)
- Color-coded connection cables
- EN 61869-1/EN 61869-2

Watch the video to learn more.

Simple termination!

Quick and easy mounting!

Image	Primary Rated Current	Secondary Rated Current	Rated Power	Accuracy Class	Cable Length	Item Number
Ø 18 mm						
1	60 A	1 A	0.2 VA	3	3 m	855-3001/060-003
	100 A	1 A	0.2 VA	3	3 m	855-3001/100-003
	200 A	1 A	0.2 VA	1	3 m	855-3001/200-001
18 36	250 A	1 A	0.2 VA	1	3 m	855-3001/250-001
Ø 18 mm						
<u> </u>	100 A	1 A	0.2 VA	1	3 m	855-4001/100-001
	150 A	1 A	0.2 VA	1	3 m	855-4001/150-001
57.2	150 A	5 A	1 VA	1	0.5 m	855-4005/150-101
0 18 49	200 A	1 A	0.2 VA	0.5	3 m	855-4001/200-001
Ø 28 mm						
	200 A	1 A	0.2 VA	1	3 m	855-4101/200-001
	250 A	1 A	0.2 VA	1	3 m	855-4101/250-001
44,5 57.2	250 A	5 A	1 VA	1	0.5 m	855-4105/250-101
27.5	400 A	1 A	0.2 VA	1	3 m	855-4101/400-001
28	400 A	5 A	1 VA	1	0.5 m	855-4105/400-101
Ø 42 mm						
	250 A	1 A	0.5 VA	1	5 m	855-5001/250-001
	400 A	1 A	0.5 VA	0.5	5 m	855-5001/400-000
	400 A	5 A	0.5 VA	1	3 m	855-5005/400-001
66,2	600 A	1 A	0.5 VA	0.5	5 m	855-5001/600-000
	600 A	5 A	0.5 VA	0.5	3 m	855-5005/600-000
	1000 A	1 A	0.5 VA	0.5	5 m	855-5001/1000-000
65	1000 A	5 A	0.5 VA	0.5	3 m	855-5005/1000-000
Ø 2 x 42 mm						
_	1000 A	1 A	0.5 VA	0.5	5 m	855-5101/1000-000
	1000 A	5 A	0.5 VA	0.5	3 m	855-5105/1000-000
<u>54.6</u> 66.2						
58						
42 66						

PLUG-IN CURRENT TRANSFORMERS

With *picoMAX*® Pluggable Connector

With 1 A Output

ADVANTAGES:

- Converts 64 A or 35 A to 1 A
- Accuracy class 1 per EN 61869-2
- Mount on DIN-rail or panels via carrier rail adapter
- UL certified (Certificate No. E356480)

Watch the video to learn more.

Mounting

Just snap together.

Use carrier rail adapter to snap to DIN-rail.

As a space-saving option, mount directly above circuit breaker.

Conductor Termination

Push-in termination of solid and ferruled conductors

Universal connection for fine-stranded conductors

Image	Primary Rated Current	Secondary Rated Current	Rated Power	Accuracy Class	Conductor Hole	Item Number
	35 A	1 A	0.2 VA	1	Ø 7.5 mm	855-2701/035-001
	64 A	1 A	0.2 VA	1	Ø 7.5 mm	855-2701/064-001
Carrier Rail Adapter					855-9927	

With Low Power Output

ADVANTAGES:

- First transformer with lower power output
- Specifically designed for converting low currents from 32 A to 320 mA
- Complies with accuracy class 0.5 per EN 61869-2 in the measurement range of 0.8 to 32 A and in combination with WAGO's 3-Phase Power Measurement Module

Watch the video to learn more.

Mounting

Side-by-side assembly

To save space, mount directly above circuit breaker.

Conductor Termination

Push-in termination of solid and ferruled conductors

Universal connection for fine-stranded conductors

Image	Primary Rated Current	Secondary Rated Current	Rated Power	Accuracy Class	Conductor Hole	Item Number
	32 A*	320 mA	0.1 Ω	0.5**	Ø 5.0 mm (0.197 in.)	855-1700/032-000

*Measurement range: 0.8 to 32 A in combination with the three-phase power measurement modules (750-493/494/495)

**Testing adheres to EN 61869-2 with a conversion ratio of 16 A/0.16 A (accuracy class: 0.5) and an extended primary current of 200%

LINE LENGTH CALCULATION FOR CURRENT TRANSFORMERS

Refined Solution for Your System Planning

To determine actual power requirements, both the power requirements of the connected measurement devices and the power losses from the measurement lines connected to a transformer's secondary circuit must be taken into account. The interface configuration software's new feature quickly and easily calculates cable length and provides the results for your system documentation.

WAGO Interface Configuration Software Start Screen

Cable length calculation using WAGO Interface Configuration Software

Simply documented!

Power calculation of copper cables between measurement device and current transformer:

I_s I

 A_{CU}

P_v

$$P_{V} = \frac{I_{s}^{2} \times 2 \times I}{A_{cll} \times 56}$$
 VA

- = Secondary rated measuring current strength [A]
- = Simple cable length in m
- = Cable cross-section in mm²
- = Power loss of connection cables

Note: When using a common three-phase return line, the values for P_v are halved.

Current transformer 5 A

$$P_{v} = \frac{5^{2} \times 2 \times 10}{1.5 \times 56} = 5.96 \text{ VA}$$

Current transformer 1 A

$$P_v = \frac{1^2 \times 2 \times 10}{1.5 \times 56}$$
 VA = 0.24 VA

Example: A 1 amp or 5 amp current transformer is used, with an ammeter on the secondary circuit, at a distance of 10 m between the transformer and the measurement device.

TERMINAL BLOCK ASSEMBLIES FOR CURRENT TRANSFORMERS AND VOLTAGE TAPS

For Fast and Easy Connections

3-Phase Power Measurement Module, 750 Series

Terminal Block Assemblies for Current Transformers and Voltage Taps Current Transformers, 855 Series

Pre-assembled terminal block assembly for easily connecting and short circuiting current transformers, suitable for three-phase power measurement modules (750-495 and 750-494)

Compact terminal block for current transformer circuit, 2007-8873 Connection option for current and voltage, including 'Y' point jumper

2007-8875 Connection option for current and voltage, including 'Y' point jumper

ADVANTAGES:

- Neutral bridging
- Easy and clear wiring

Watch the video to learn more.

- Short-circuiting of current transformers
- Test sockets for control measurements
- Visible current and voltage path separation

3-Phase Power Measurement Module, 750 Series Terminal Block Assemblies for Current Transformers and Voltage Taps

Current Transformers, 855 Series

Pre-assembled terminal block assembly for easily connecting and short circuiting current transformers, suitable for three-phase power measurement modules (750-495)

Compact terminal block for current transformer circuit, 2007-8874; connection option for current and voltage

Compact terminal block for current transformer circuit, 2007-8877; connection option for current

HIGH-CURRENT, RAIL-MOUNT TERMINAL BLOCKS UP TO 185 mm² (350 KCMIL)

The Ideal Addition to Current Measurement with Plug-In Transformers

Fast Termination

 Eliminate time-consuming preparation – no ring terminals or ferrules required

Always Reliable

 Perfect clamping force – independent of operator skill

Suitable for All Applications

- Meet the most stringent requirements, including those specified for railway and marine applications
- Material durability at high and low external temperatures

Easy Termination

- Side-entry conductor termination
- Orange locking tab keeps the clamp open for hands-free wiring

285 Series Item Number							
Designation		35 mm² (2 AWG)	50 mm² (1/0 AWG)	95 mm² (4/0 AWG)	185 mm² (350 kcmil)		
Conductor range		6 35 mm² 10 2 AWG	10 50 (70 "f-st") mm² 8 1/0 AWG	25 95 mm² 4 4/0 AWG	50 185 mm² 1/0 AWG 350 kcmil (ground per standard max. 120 mm² / 250 kcmil)		
Nominal current I _N		125 A	150 A	232 A	353 A		
Rated voltage		1000 V	1000 V	1000 V	1000 VAC/DC, 1500 VDC		
Through terminal block	•	285-135	285-150	285-195	285-1185		
Through terminal block	•	285-134	285-154	285-194	285-1184		
Ground conductor terminal block	•	285-137	285-157	285-197	285-1187		
Adjacent jumper*		285-435	285-450	285-495	285-1171		
Step-down jumper (for TOBJOB® S, 1	0/16 mm²)	285-430	-	-	-		
Power tap*		285-427	285-447	285-407	285-1175		
Three phase set (without DIN-rail ar ing accessories)	nd mark-	285-139	285-159	285-199	285-1169		
Warning cover		285-420	285-440	285-170	285-1177		
Shock protector		285-421	285-441	285-169	285-1178		
Marking strip (reel)		2009-110	2009-110	2009-110	2009-110		
Marker carrier		285-442	285-442	285-442	-		
WMB Inline markers (reel)		2009-115	2009-115	2009-115	2009-115		
WMB Multi marking system (for 5	. 5.2 mm)	793-5501	793-5501	793-5501	793-5501		

*For more technical data, see our Full Line Catalog, Volume 1, or visit http://eshop.wago.com.

The power tap is inserted into the jumper contact slot. It can be fitted with a strain relief plate (for 35 mm² high-current, rail-mount terminal blocks).

Power tap provides safe and easy power distribution to additional loads. The tap is inserted when the spring is retracted – without connected conductor (for 50mm²/1/0 AWG to 185 mm²/350 kcmil) high-current, rail-mount terminal blocks).

CURRENT AND VOLTAGE TAP

The 2-in-1 Solution

A combination of current transformer and voltage tap, the current and voltage tap (can be quickly and easily mounted into the jumper slot of a two-conductor through terminal block (95 mm²/4/0 AWG, 285-195). This combination fits perfectly into a successful energy management plan.

Output – Voltage

Redundant design

Output – Current

- Energy measurement device connection (1A)
- Short-circuiting the current transformer
- Neutral bridging

Marking Possibility

- TOPJOB® S Marking Strips
- WMB Multi Marking System

Feedthrough for Primary Conductors up to 95 mm²/4/0 AWG

Technical Data for Current and Voltage Taps (855-951/250-000)					
Primary rated current I _{pri}	250 A				
Secondary rated current I _{sec}	1 A				
Accuracy class	0.5				
Rated power S _r	0.2 VA				
Rated voltage	690 VAC				
Fuse	2 A, 450 V, F, 70 kA (5 x 25 mm)				
Feedthrough for measurement conductor	Ø 16.0 mm (0.630 in.)				

Current and voltage can be measured directly at the supply with the current and voltage tap (855-951/250-000) and the two-conductor through terminal block (95 mm²/4/0 AWG, 285-195)

ADVANTAGES:

- Power data can be directly tapped into the power supply
- Easy installation simply insert the tap into the jumper slot of the twoconductor through terminal block (95 mm²/4/0 AWG) with POWER CAGE CLAMP
- Integrated 250 A/1 A current transformer
- Complies with accuracy class 0.5 per EN 61869-2 for exact measurement results
- Fused voltage path protects downstream measurement devices

Watch the video to learn more.

ROGOWSKI COILS

For Quick, Easy Retrofit of Existing Systems

ADVANTAGES:

- Rated insulation voltage: 1000 V Cat. III / 600 V Cat. IV
- Accuracy class 1 per EN 61869-2
- IP67 protection class
- Ambient temperature: -40 ... +80 °C
- UL certified

Watch the video to learn more.

Image	Description	Cable Length	Feedthrough for Measurement Conductor	
\nearrow	Pogowaki pojla PC 070	1.5 m (59.06 in.)	(170 mm (2750 in)	
	ROYOWSKI COIIS RC-070	4.5 m (0.177 in.)	2 70 mm (2.756 m.)	
1 Alexandre	Pogowski pol PC 125	1.5 m (59.06 in.)	(1)25 mm (4,021 in)	
	NUGUWSKI CUII NG-125	4.5 m (0.177 in.)	125 mm (4.52 mm.)	
×	Rogowski coil RC-175	1.5 m (59.06 in.)	(1.175 mm)(6.900 in)	
		4.5 m (0.177 in.)	175 mm (0.690 m)	
×	Pogowski spil PT 500	1.5 m (59.06 in.)	(1 55 mm (2 165 in)	
	Rogowski coli k 1-500	3.0 m (118.11 in.)	9 55 min (2.105 m.)	
	Pogowski spil PT 2000	1.5 m (59.06 in.)	(4.125 mm (4.021 in))	
	KOGOWSKI COII KT-2000	3.0 m (118.11 in.)	ע דבס ווווו (4.921 ווו.)	

*The specifications for the primary rated current refer to a combination with the WAGO Modules (857-552 and 750-495/000-002). Rogowski technology allows the coils to measure a wide primary current range of up to 10,000 A without loss of accuracy, because there are no saturation effects with this technology.

Bayonet connector: Robust and durable

Anchor points: Quick and easy mounting with cable ties

Lock-out seal option: Higher security via sealable bayonet lock

Easy to Use:

• Rogowski coil diameter: 70, 125 or 175 mm

Direct connection of Rogowski coils to the three-phase power measurement module (750-495/000-002)

- Length of signal line: 1.5 m or 4.5 m
- Sealable bayonet connector
- Anchor points for cable ties

Primary Rated Current*	Output Signal	Accuracy Class**	Item Number
1000 4 4 0	22.5 mV / kA	1	855-9150/2000-0701
4000 AAC	at 50 Hz	1	855-9450/2000-0701
4000 4 4 0	22.5 mV / kA	1	855-9150/2000-1251
4000 AAC	at 50 Hz	1	855-9450/2000-1251
4000 AAC	22.5 mV / kA	1	855-9150/2000-1751
	at 50 Hz	1	855-9450/2000-1751
500 4 4 0	10.5 mV / 500 A		855-9100/500-000
500 AAC	at 50 Hz	-	855-9300/500-000
2222 4 4 2	40.2 mV /2000 A		855-9100/2000-000
2000 AAG	at 50 Hz	-	855-9300/2000-000

SIGNAL CONDITIONERS AND ISOLATION AMPLIFIERS

Current and Voltage Signal Conditioners

	Description	Image	Circuit Diagram	Input			Output	
	LA LV Current	and Voltage Sigr	nal Conditioners	Ì⁄A,	v	-/+	ÌA.	
	Through-Hole Current Signal Conditioner		11 12 12 13 14 00/PUT 00/F 4.1 13 14 00 00 00/F 4.1 00/F 4.1 221 50 50 50 00 00/F 4.1 221 50 50 50 00 00/F 4.1 21 50 50 50 00 10/F 12 31 50 JUMPR JUMPR Up- 11 32 6N0 50 POWE2 0ND 62	AC/DC 100 A			0 10 mA 2 10 mA 0 20 mA 4 20 mA	
nditioners	Current Signal Conditioner		IN 1A (GND 1) IN 5A (GND 1) DO (GND 3) GND 1 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 A AC/DC 5 A AC/DC			0 10 mA 2 10 mA 0 20 mA 4 20 mA	
Itage Signal Cor	Rogowski Coil Current Signal Conditioner		RC1+ [GND 1] 1 IN OUT 5 OUT+ GND 1 2 IN 0 5 GND 2 RC2+ (GND 1) 3 7 Us+ DO (GND 3) 4 DO 8 GND 3	Rogowski coils 500 AAC 2000 AAC 4000 AAC			0 10 mA 2 10 mA 0 20 mA 4 20 mA	
Current and Vo	Voltage Signal Conditioner		IN 300 V 1 IN OUT + GND 1 2 IN OUT - IN 30 V 3 POWER DO [GND 2] 4 DO POWER 8 GND	300 VAC/DC			0 10 mA 2 10 mA 0 20 mA 4 20 mA	
	Power Signal Conditioner		IN 300 V GND 1 IN 5 A DO [GND 2] IN 5 A 4 DO CUT CUT CUT CUT CUT CUT CUT CUT	300 VAC/DC (5 A)			0 10 mA 2 10 mA 0 20 mA 4 20 mA	
	Millivolt Signal Conditioner		IN+ IN- 2 mV N.C. 4 POWER OUT 5 OUT+ U,J 6 GND 1 Us+ GND 2		0 200 mV 0 1000 mV	±100 mV	0 10 mA 2 10 mA 0 20 mA 4 20 mA	

+

Bipolar signals Current and voltage

Current

Voltage

Digital output (DO)

Clipping capability

Zero/span adjustment

Output			Special F	unctions		Configuration			Power Supply	Item Number	
Î⁄V,	+			ZERO	S	04 1 3 3 4 5 6 7 6 9 10	Ţ			÷	
0 5 V 1 5 V 0 10 V 2 10 V	±10 mA ±20 mA ±5 V ±10 V	x	x	x	x	x	x	x	x	24 VDC	2857-550
0 5 V 1 5 V 0 10 V 2 10 V		х	x			х	х	х		24 VDC	857-550
0 5 V 1 5 V 0 10 V 2 10 V		х	х			х	х	х		24 VDC	857-552
0 5 V 1 5 V 0 10 V 2 10 V		х	х			х	х	х		24 VDC	857-560
0 5 V 1 5 V 0 10 V 2 10 V		х	х			х	х	х		24 VDC	857-569
0 5 V 1 5 V 0 10 V 2 10 V			х			х	Х	х		24 VDC	857-819

Simulation

ON 1 2 3 4 5 6 7 8 9 10

DIP switch

Supply voltage

Interface configuration software

Interface configuration app

Free download

Interface configuration display, 2857-900

Signal Conditioners and Isolation Amplifiers

Current and Voltage Signal Conditioners

Voltage Signal Conditioner, 857-560

Voltage measurement

Current Signal Conditioner, 857-550

Current measurement via plug-in current transformer

Rogowski Signal Conditioner, 857-552

Current measurement via Rogowski coil

Current Signal Conditioner, 2857-550

Light monitoring

INTELLIGENT CURRENT SENSORS

Monitor Solar Plants via MODBUS Communication

ADVANTAGES:

- Wide measurement range for measuring AC and DC current
- Measure line and sum currents for perfect system monitoring
- Easily guide live conductor through current sensor
- Quickly mount to DIN-rail

Addressing

Status indicator

Connection to a PERSPECTO® Control Panel

Measurement range	0 80 ADC	0140 ADC	AC 0 50 A _{rms}
Transmission error	≤ 0.5% of upper-range value	\leq 0.5% of upper-range value	\leq 0.5% of upper-range value
Power supply	12 34 V (via RJ-45)	12 34 V (via RJ-45)	12 34 V (via RJ-45)
Feedthrough	15 mm (for electrical lines)	15 mm (for electrical lines)	15 mm (for electrical lines)
Interface	RS-485	RS-485	RS-485
Protocol	MODBUS over serial line	MODBUS over serial line	MODBUS over serial line
Addressing	1 32	132	132
Max. bus length	≤ 1200 m	≤ 1200 m	≤ 1200 m
ltem number	789-620	789-621	789-622

MEASUREMENT METHODS

High-Side Method

Shunt Measurement (AC/DC)

Current measurement is performed using a lowohm resistor (shunt), which is connected in parallel to a voltmeter. The current is proportional to the current measured at the shunt resistor, I = U/R.

The shunt can be located upstream or downstream of the load (high-side/low-side method). WAGO products are equipped for both methods, giving users the freedom to decide where the conductor section should be disconnected. In addition to DC and AC currents, shunt measurements are also suitable for measuring superimposed signals (DC + AC). Accuracies of 0.1% and greater can be achieved. WAGO's 855 Series Plug-In Current Transformers with a predefined division ratio can be used to expand the measurement range for pure AC measurements.

Transformer Principle

Shunt Measurement in Combination with Plug-In Current Transformer (AC)

Plug-In Current Transformers are used at higher measurement currents. They function based on the transformer principle and expand the range of an existing measurement system (usually a shunt transformer). The number of secondary windings mirrors the fixed setting of the division ratio. The electrically isolated output AC is proportional and in phase with the input AC. The measuring error typically lies below 1%.

Rogowski Coil

Hall Effect Sensor

Rogowski Coil (AC)

A closed-air coil, i.e., coil without iron core, is applied around the conductor that will be measured. The AC current flowing through the conductor induces a proportional voltage in the Rogowski coil. The output voltage is amplified and conditioned. A measurement error of less than 2% and a response threshold of only a few amps guarantee straightforward measurement of high to very high AC currents.

Hall Effect Sensors (AC/DC)

A soft, magnetic core is wrapped around the conductor. The core has a small air gap in which the Hall effect sensor is located. A magnetic flux is generated in the ring-shaped core by the current flowing through the conductor. The magnetic flux also flows through the Hall effect sensor, which outputs a voltage signal proportional to the current measured. This signal is prepared and forwarded for processing. Using the Hall method, different signals (AC/DC) and measurement ranges can be mapped, depending on the design. Measurement accuracy lies between 0.5% and 1%.

Measurement Method	Advantages	Application Areas
Shunt	Very high accuracySuitable for DC and AC currents	 Integration into control and regulation systems Process and energy technology
Shunt + Current transformer	Suitable for higher AC currentsPotential-free measurement	 Installations and systems technology Network monitoring and analysis
Hall effect	Potential-free measurementFor higher currentsDC and AC versions	 PV systems and general energy technology Control processing of several individual systems

GLOSSARY

Apparent Power S

Apparent power (S) is the total power of a transmission network. It is composed of active power (P) and reactive power (Q). Positive apparent power, which is in the interest of the consumer, means that the power is drawn from the grid. Negative apparent power, however, means that power is fed back into the grid.

Active Power P

The active power (P) is the power actually consumed. It has no phase shift between current and voltage and relates to a resistive load. For an alternating voltage, the active power results from the multiplication of the RMS values for current and voltage.

Reactive Power Q

Reactive power (Q) refers to a load on the power grid, which acts against the power flowing from the producer to the consumer. Reactive power is the product of voltage and current flowing through a reactance. Reactive power is generated by any device that is connected to an AC grid. All electrical equipment generates an electromagnetic field when voltage is applied. The magnetic field is constantly being built up and then dismantled by the alternating voltage. The energy created when the field is being dismantled is fed back into the power grid, increasing the resistance to the current flow.

Harmonics

Harmonics are currents having frequencies that are multiples of the 50 Hz fundamental frequency. The harmonic degree is defined as the relationship between harmonic and fundamental frequency. Harmonics are created by devices with non-linear characteristic curves (e.g., transformers, rectifiers, televisions, computers, halogen lighting). The non-sinusoidal currents of these devices result in a voltage drop in the network impedance, which distorts the network nominal voltage and affects operation.

The impacts of harmonics contamination include: failure of protective devices, thermal overload and premature aging of electrical equipment, loss of mechanical stability, performance loss, measurement errors, higher noise level, hard drive failures, system crashes, operational breakdowns and more.

If many devices are operated within a network that generates the third harmonic, it may result in a very high current load of the neutral conductor. Neutral conductor currents caused by harmonics in TN-C power networks travel within the entire equipotential bonding system via water/heating pipes, grounding systems, shields of data lines, video lines and communication systems. This can lead to increased corrosion or pitting on piping systems.

Therefore, continuous harmonics and neutral conductor analysis are required for guaranteeing both power supply and overvoltage protection, as well as fire safety.

GLOSSARY

Arithmetic Mean Value

The arithmetic mean value (also average) is the sum of all measured values detected and divided by the number of measured values.

For periodic variables (e.g., sine waves), the arithmetic mean is zero. For this reason, it is not meaningful for use with periodic variables, or it only provides information about a possibly present constant. For DC variables, the arithmetic mean value corresponds to the average measured value viewed over time.

Mean Square Value

The mean square value – RMS (root-mean-square), also the TRMS (true root-mean-square) – is the square root of the quotient of the sum of squares for the measured values and number of measured values (square root of the average of the measured value).

In electrical engineering, the effective value of a periodic quantity corresponds to the effective value of the DC variable. It is characteristic of the power transformed in the consumer.

The RMS and TRMS terms are frequently differentiated. This is based on historical context, so that newer measuring procedures are preferred over form factor based methods. In principle, WAGO measures according to the TRMS method. However, no special differentiation is made, as both terms describe the same mathematical equation, and one merely indicates the specific accuracy of the measurement.

Digital Processing

During digital processing, the signal is sampled in defined, very short time intervals (digitized). The sampled values are processed and, e.g., converted into an analog standard signal.

Digital processes are becoming increasingly common, since high reproducibility and signal-authentic mapping can be guaranteed due to high sampling rates. In addition, further processing or transmission of the digitized information is easier, less susceptible to interference and more flexible, due to the software.

Analog Processing

During analog processing, the input signal is fed directly to a processing unit and prepared according to a fixed transfer function. The processing occurs using an operational amplifier (OpAmp) and a few passive components.

WAGO Kontakttechnik GmbH & Co. KG

Postfach 2880 · 32385 Minden Hansastraße 27 · 32423 Minden info@wago.com www.wago.com Headquarters Sales Orders Fax:

+49 571/ 887 - 0 +49 571/ 887 - 222 +49 571/ 887 - 44 333 +49 571/ 887 - 844 169

WAGO is a registered trademark of WAGO Verwaltungsgesellschaft mbH.

"Copyright – WAGO Kontakttechnik GmbH & Co. KG – All rights reserved. The content and structure of the WAGO websites, catalogs, videos and other WAGO media are subject to copyright. Distribution or modification to the contents of these pages and videos is prohibited. Furthermore, the content may neither be copied nor made available to third parties for commercial purposes. Also subject to copyright are the images and videos that were made available to WAGO Kontakttechnik GmbH & Co. KG by third parties."